MOUSE: Precision File-Editing Tools for AI Coding Agents

A Controlled Study of Tool Architecture Effects on Agent Performance
Technical Report with Complete Statistical Analysis

Simon W. Reiff
Working Draft — January 2026

Abstract

Al coding agents increasingly rely on file-editing operations, yet standard editing
paradigms require agents to echo file content in responses—creating inefficiencies in cost,
time, and reliability. We present MOUSE, a suite of precision file-editing tools for AI coding
agents exposed via the Model Context Protocol. Across three preregistered confirmatory
studies (N = 67 paired trials), we compared MoOUSE-enabled GitHub Copilot instances
against baseline instances using standard editing tools, both running in isolated Docker
containers on timed file-editing benchmarks.

Results demonstrate statistically significant advantages for MOUSE:

o Precision: 56% vs 0% first-try correctness (risk difference = 456 percentage points,
95% CI [+33, +73] pp, McNemar two-sided p = 1.22 x 107%)

o Capability: 89.5% vs 0% success on structured data manipulation (risk difference =
+89.5 pp, 95% CI [+63, +97] pp, McNemar one-sided p = 7.63 x 107%)

» Efficiency: On tasks it can complete, Baseline costs 58% more (geometric mean ratio
G = 1.58, 95% CI [1.35,1.91], permutation one-sided p = 7.15 x 10~7) and takes 3.6x
longer (95% CI [2.77,4.06]x, permutation one-sided p = 1.19 x 10~7)

All primary hypotheses achieved statistical significance at preregistered o = 0.05 thresh-
olds, with effect sizes ranging from “large” to “very large” by conventional criteria. Our
benchmark methodology isolates tool architecture as an independent variable while hold-
ing the model constant—an approach we believe is novel in Al agent evaluation. These
findings suggest that tool architecture, not just model capability, is a critical and under-
explored lever for Al coding agent performance. Limitations include benchmark specificity
and single-baseline comparison.

Keywords: Al coding agents, developer tools, file editing, large language models, tool use,
Model Context Protocol

Contents

1 Introduction
1.1 The File-Editing Bottleneck oL
1.2 The Cost of Verbosity
1.3 Research Questions e
1.4 Contributions e

2 Background and Related Work
2.1 Al Coding Assistants
2.2 Tool Use in Large Language Models
2.3 Programming by Edit and Patch-Based Approaches
2.4 Evaluation Benchmarks o oo

2.5

2.4.1 Agent-Level Benchmarks

2.4.2 Tool-Use and Function-Calling Benchmarks
2.4.3 Edit Generation Quality Benchmarks
2.4.4 The AT Agent File-Editing Tool Gap
The File-Editing Problem

The Mouse Approach

3.1 High-Level Architecture
3.2 Key Capabilities e
3.3 Comparison to Baseline o
Methods
4.1 Study Design
4.2 Experimental Environment oL
4.3 Cost Measurement e
4.4 Instruction Neutrality
4.5 The Three Studies e
4.5.1 Study BX-504B: Precision Editing
4.5.2 Study BX-701R: Capability Boundary
4.5.3 Study BX-504D: Economic Efficiency
4.6 Metrics e
4.7 Statistical Methods
4.7.1 Test Directionality
4.7.2 Primary Tests. o .o
4.7.3 Effect Sizes
4.74 Confidence Intervals o o
4.7.5 Bayesian Analysis
4.8 Methods Rationale
4.9 Validity Checks o
Results
5.1 Part A: Confirmatory Findings
5.1.1 Study BX-504B: Primary Hypothesis (H1)
5.1.2 Study BX-504B: Secondary Hypotheses (H2, H3)
5.1.3 Study BX-504B: Per-Protocol Sensitivity Analysis
5.1.4 Study BX-701R: Primary and Secondary Hypotheses
5.1.5 Study BX-504D: Primary and Secondary Hypotheses
5.1.6 Summary: Confirmatory Results (H1 Confirmed in All Studies)
5.2 Part B: Robustness Analyses and Effect Characterization
5.2.1 Effect Size Dashboard
5.2.2 Effect Size Characterization (BX-504B)
5.2.3 Descriptive Findings: Study BX-701R
5.2.4 Descriptive Findings: Study BX-504D
5.3 Part B.3: Cross-Study Synthesis o
5.4 Part B.4: Distribution-Free Lower Bounds
5.4.1 Statistical Robustness Lo
Discussion
6.1 Tool Architecture as a Performance Lever
6.2 The Verbosity Tax
6.3 Capability Boundaries vs. Absolute Limits.
6.4 The Consistency Advantage

13
13
13
14
14
15
15
17
17
17
18
18
20
21
22
23

6.5

6.6
6.7

Threats to Validity
6.5.1 Internal Validity
6.5.2 External Validity L
6.5.3 Construct Validity
Limitations L L
Future Work

Artifacts and Reproducibility

7.1
7.2
7.3

Materials Available Upon Request
Reproducibility Checklist o o
What Cannot Be Shared

Conclusion

8.1
8.2

Summary of Findingso
Implications L

Statistical Notes

Al
A2
A3

Test Directionality Summary L Lo
Sigma Conversion Lo e e e e e
Glossary o

Exploratory Analyses

B.1
B.2
B.3

Principal Component Analysis (BX-504D)
Kolmogorov-Smirnov Tests (BX-504D)
Shift Function Analysis (BX-504D)

Study-Level Summary Statistics

C.1
C.2
C.3

Study BX-504B: Precision Editing oo L.
Study BX-701R: Capability Boundary
Study BX-504D: Economic Efficiencyo

Post-Hoc Effect Size Characterization

D1
D.2
D.3
D4
D.5
D.6
D.7

Hedges’ g (Sensitivity Analysis)
Pearson’s r and r? (Variance Explained)
Cohen’s h for Proportions
Vargha-Delaney Ao (Probability of Superiority)
Cohen’s Us (Non-Overlap) o
Number Needed to Treat (Binary Outcomes Only)
Summary: Effect Size Magnitude o oo

26
26
26
26

26
26
26

28
28
29
29

29
29
29
29

29
30
30
31

1 Introduction

1.1 The File-Editing Bottleneck

Large language models (LLMs) have transformed software development through Al coding assis-
tants that can generate, explain, and modify code [1, 2]. Tools like GitHub Copilot, Cursor, and
Claude integrate directly into development environments, promising to accelerate engineering
workflows. However, a fundamental bottleneck constrains their effectiveness: file editing.
When an Al agent needs to modify existing code, standard approaches require the agent to:

1. Read the relevant file content
2. Identify the section to change
3. Output both the old content (to locate the edit) and new content (to replace it)

This “oldString/newString” paradigm forces agents to echo substantial portions of files
in their responses. A simple deletion of 50 lines requires transmitting those 50 lines back to
the system—even though the intent could be expressed as “delete lines 10-60.”

1.2 The Cost of Verbosity

The economic implications are significant. Output tokens typically cost 3—-5x more than input
tokens in commercial LLM APIs [3]. When agents must echo file content, they:

o Waste tokens on content that already exists in the system
e Increase latency as longer responses take more time to generate
¢ Risk errors when reproducing whitespace, indentation, or special characters

For tasks involving large files or repetitive edits, these inefficiencies compound.

1.3 Research Questions

RQ1 (Precision) Does MOUSE improve first-try correctness compared to Agents using built-
in find-and-replace tools?

RQ2 (Capability) Does MOUSE unlock tasks that are currently infeasible for AT Agents to
perform under equivalent resources?

RQ3 (Speed) Is MOUSE faster than built-in tools at performing equivalent work?

RQ4 (Cost) Is MOUSE less expensive than built-in tools at performing equivalent work?

1.4 Contributions
This paper makes three contributions:

1. Mouse, a toolkit of precision file-editing operations designed for Al coding agents, demon-
strating that declarative, compact commands can outperform verbose editing paradigms.

2. Empirical evidence from three preregistered confirmatory studies (N = 67 pairs) using
a novel benchmark methodology—the first to isolate Al agent file-editing tool architecture
as an independent variable while holding the model constant.

3. 30 numbered findings with effect sizes, confidence intervals, and explicit test direction-
ality, enabling independent verification.

2 Background and Related Work

2.1 AI Coding Assistants

The landscape of Al coding assistants has expanded rapidly since GitHub Copilot’s introduction
in 2021 [1]. Current tools span from code completion (Copilot, Tabnine) to full agentic sys-
tems (Cursor Composer [2], Cline, Aider). These tools increasingly integrate with development
environments to perform file operations, execute tests, and iterate on solutions.

2.2 Tool Use in Large Language Models

Modern LLMs support “function calling” or “tool use”—invoking external functions and in-
corporating results [3, 10]. The Model Context Protocol (MCP) [5] provides a standardized
interface for LLM-tool communication. Recent evaluations of tool-augmented agents include
ToolBench [11], which assesses function-calling accuracy but not editing-tool design. However,
the design of these tools remains underexplored; most research focuses on model capability
rather than tool architecture.

2.3 Programming by Edit and Patch-Based Approaches

Prior work on structured editing includes syntax-directed editors [6]. Recent LLM code editing
approaches include Aider’s “architect” mode [12]. Our work differs in focusing on the interface
between LLM agents and editing operations, though MOUSE also contributes novel editing
algorithms.

2.4 Evaluation Benchmarks

Existing benchmarks for Al coding agents can be organized into three categories, each evaluating
a different aspect of agent performance. We identify a fourth category—AI agent file-editing
tool benchmarks—that our work introduces.

2.4.1 Agent-Level Benchmarks

These benchmarks evaluate end-to-end agent performance on coding tasks, measuring whether
agents can solve problems correctly. SWE-bench [4] evaluates agents on real GitHub issues,
requiring them to produce patches that pass repository test suites. HumanEval [13] and
MBPP [14] assess code generation from natural language specifications. APPS [15] provides
competitive programming problems at varying difficulty levels. In all cases, the evaluation tar-
get is the agent’s reasoning and code generation capability; the editing tools are assumed to be
sufficient and are not varied.

2.4.2 Tool-Use and Function-Calling Benchmarks

A second category evaluates how well agents select and invoke tools from a provided set. API-
Bank [19] assesses agents on multi-step APT call sequences. ToolBench [11] provides thousands of
real-world APIs for tool selection evaluation. Gorilla [20] tests API call accuracy against massive
API corpora. The Berkeley Function Calling Leaderboard (BFCL) [21] provides standardized
function-calling evaluations. These benchmarks test whether agents can correctly invoke tools,
but not whether the tools themselves are well-designed for agent use.

2.4.3 Edit Generation Quality Benchmarks

A third category evaluates whether agents can produce correct code edits. CanltEdit [16] tests
whether LLMs can follow code editing instructions, measuring the quality of generated patches.

CodeEditorBench [17] evaluates edit generation across multiple programming languages. Edit-
Bench [18] provides realistic instructed code editing tasks derived from real development sce-
narios. These benchmarks assume the edits are applied correctly by the environment; they do
not evaluate the edit application mechanism itself.

2.4.4 The AI Agent File-Editing Tool Gap

All three categories share a common assumption: the file-editing interface is held constant while
agent capability, tool selection accuracy, or edit generation quality is varied. None isolates the
editing tool architecture as an independent variable.

To our knowledge, no prior benchmark family has been designed to evaluate Al agent file-
editing tools while holding the agent model constant. The BX-50X and BX-70X families of
benchmarks introduced in this paper fill this gap: we fix the model (Claude Sonnet 4.5 or
Haiku 4.5), fix the task, and vary only the editing tool interface. This enables controlled
comparison of editing paradigms—a methodological contribution complementary to existing
benchmark categories.

2.5 The File-Editing Problem
Existing approaches to file editing fall into two categories:

Find-and-Replace The dominant paradigm, requiring agents to specify both old content (to
locate) and new content (to substitute). Examples include VS Code’s replace_string_-
in_file and multi_replace_string_in_file.

Diff-Based Some systems use unified diff format, but this still requires outputting deleted lines
with “-” prefixes—eliminating potential efficiency gains.

Neither approach addresses the fundamental problem: agents must echo content that already
exists.

3 The Mouse Approach

MOoUSE replaces the standard “oldString/newString” editing paradigm with a suite of compact,
declarative operations exposed via MCP. Rather than requiring Al agents to echo file content,
MOoUSE allows agents to express editing intent directly.

3.1 High-Level Architecture

MoUSE provides Al agents with editing primitives that:
e Address content by position rather than requiring content matching
o Express operations declaratively (e.g., “delete lines 10-50")

o Execute atomically with built-in staging and rollback mechanisms

3.2 Key Capabilities

The MOUSE toolkit (version 0.9.x) provides 10 tools spanning:
o Line-based insertions and deletions
o Literal text replacement

e Bulk operations across line ranges

e Structured content relocation

» Staged editing with explicit save/cancel

Implementation details are proprietary; this paper reports only observable behavioral dif-
ferences.
3.3 Comparison to Baseline

Where baseline tools require outputting both the text being replaced and the replacement,
MOUSE operations typically require only replacement content (for modifications) or positional
parameters (for deletions). This architectural difference is the hypothesized mechanism for the
efficiency and reliability gains reported in Section 5.

4 Methods

4.1 Study Design

We conducted three independent confirmatory studies using a within-subjects paired design:

e Preregistered hypotheses, analysis plans, and stopping rules before data collection
o Paired randomization (MOUSE-first vs Baseline-first balanced via PRNG)

e Model version, temperature, and task content held constant across conditions

4.2 Experimental Environment

Both conditions used GitHub Copilot (Claude Sonnet 4.5 or Haiku 4.5, depending on study)
running in VS Code within isolated Docker containers. The only difference was MOUSE tool
availability.

Table 1: Container environment configuration.'

Component Baseline Mouse

Base Image code-server:latest code-server:latest
Runtime Node.js 20.x Node.js 20.x
Editor VS Code + Copilot VS Code + Copilot

Editing Tools replace_string_in_file MOUSE v0.9.x (10 tools)

4.3 Cost Measurement

Cost definition: Costs reported in this paper are imputed API costs calculated from mea-
sured token counts using Anthropic’s public rate card. We used the rate card in effect during
data collection (December 2025): Claude Sonnet 4.5 at $3/M input ($0.30/M cached), $15/M
output; Claude Haiku 4.5 at $1/M input ($0.10/M cached), $5/M output.? Token counts were
captured from the telemetry stream and include input tokens (system prompt, context, tool
results) and output tokens (model responses, tool calls). GitHub Copilot does not expose per-
request billing; these imputed costs represent what equivalent direct API usage would cost and
enable cross-condition comparison. We additionally report pricing-agnostic token deltas
(Tables 27, 28, 29) to enable cost re-estimation under alternative rate cards.

'For each instance, the specific versions of VS Code, GitHub Copilot, Copilot Chat, Node.js, and Mouse were
pinned and recorded.

*Rate card retrieved from https://claude.com/platform/api on December 15, 2025. API pricing is subject
to change; readers should verify current rates for cost projections.

https://claude.com/platform/api

4.4 Instruction Neutrality

Task instructions were designed to be tool-agnostic. Instructions did not direct agents to use
any particular tool, operation, or strategy. Where general guidance was provided (e.g., “con-
sider batching operations”), it was given equally to both conditions. Both conditions received
structurally parallel instruction files differing only in tool-specific quick references.

4.5 The Three Studies

Table 2: Summary of the three confirmatory studies.

Study Version N Task Model T

BX-504B v0.9.5 25 pairs Multi-block refactoring Haiku 4.5 180s
BX-701R v0.9.7 19 pairs CSV column relocation Sonnet 4.5 240s
BX-504D v0.9.7 23 pairs Legacy code deletion Haiku 4.5 120s

4.5.1 Study BX-504B: Precision Editing

BX-504B is a single-file surgical editing task on data-transformer. js (445 — 158 lines). The
agent must delete legacy code blocks, delete legacy imports, and uncomment modern code
blocks—all marked with specific comment delimiters. Success requires byte-for-byte match to
the answer key.

Preregistered Endpoints:

o Primary (H1): Perfect First Try (PFT) rate—exact match on first attempt
o Secondary (H2): Success rate within 7 = 180s (gated by H1)

o Secondary (H3): Cost Per Success (gated by H2)

4.5.2 Study BX-701R: Capability Boundary

The “Evil Square CSV” task requires relocating a column across 126 rows of structured data.
This task stresses both context limits (agents must reference many rows) and output limits
(baseline tools must echo substantial content). This study tests whether MOUSE’s compact
notation can succeed where verbose approaches fail under equivalent time and resource con-
straints.

Preregistered Endpoints:

o Primary (H1): Truncated Time-to-Success () with 7 = 240s

» Secondary (H2): Success rate (gated by H1)

4.5.3 Study BX-504D: Economic Efficiency

The BX-504D benchmark presents a 594-line legacy source file that must be completely deleted

and replaced with a one-line deprecation comment followed by a newline. This simpler deletion

task is designed to measure cost and time efficiency when both conditions can succeed at high

rates, enabling direct economic comparison without capability-boundary confounds.
Preregistered Endpoints:

e Primary (H1): Geometric Mean Paired Cost Ratio (G)

o Secondary (H2): Time efficiency (gated by H1)

4.6 Metrics

Perfect First Try (PFT) Task correct on first attempt, before any feedback or retry
Success Rate Task completed with 100% accuracy within timeout 7

Truncated Time (7)) Completion time if successful, or timeout 7 if not

RMTS Restricted Mean Time Saved: mean of paired differences (7’ Baseline — Ir Mouse)
Cost Imputed API cost (input + output tokens at rate card prices)

Cost Ratio (G) Geometric mean of paired cost ratios: G = exp(mean(log(R;))) where R; =
COStBaseline,i/COStMouse,i
4.7 Statistical Methods

Our evaluation employs statistical methods that are standard in clinical trials and experimental
psychology—paired designs, exact tests for small samples, effect sizes with confidence intervals—
but which we believe warrant explicit presentation given variable statistical reporting practices
across research communities. We describe our choices in detail to facilitate replication and
comparison.

4.7.1 Test Directionality

Test directionality was preregistered separately for each study based on calibration data and
theoretical expectations:

o BX-504B: Two-sided McNemar tests (H1, H2) at o = 0.05; one-sided permutation test
for cost (H3)

o BX-701R: One-sided tests throughout at o = 0.05 (justified by strong directional cali-
bration: 8/8 discordant pairs favored MOUSE in pilot)

o BX-504D: One-sided tests throughout at o« = 0.05 (directional hypotheses preregistered)

All p-values reported in this paper indicate their directionality explicitly.

4.7.2 Primary Tests

o Binary outcomes (PFT, Success): Exact McNemar test on the 2 x 2 discordance table

o Continuous outcomes (Cost, Time): Exact paired permutation test (QN enumeration
when N < 23; 10,000 random permutations otherwise)

4.7.3 Effect Sizes

We report multiple complementary effect size measures to characterize the magnitude and
practical significance of observed differences.

Risk Difference (Primary for Binary Outcomes). The risk difference RD = pys — pp
provides an absolute measure of the probability improvement from MOUSE over Baseline. This
metric handles boundary values (0% or 100%) naturally and has direct practical interpretation:
“Mouse succeeds |RD| percentage points more often than Baseline.”

Number Needed to Treat (NNT). The NNT quantifies how many tasks must use MOUSE
instead of Baseline to gain one additional success:

1

~ [RD|

For example, NNT = 1.8 means switching 1.8 tasks from Baseline to MOUSE yields one addi-
tional first-try success on average.

NNT

Conditional Win Rate. For paired designs, the conditional win rate w = b/(b + ¢) gives
the proportion of discordant pairs won by MOUSE, where b = pairs MOUSE won and ¢ = pairs
Baseline won. This metric directly addresses: “When the conditions disagree, how often does
MOUSE win?”

Cohen’s h (Binary Outcomes, Post-Hoc). For proportion differences, we compute Co-
hen’s h using the arcsine transformation:

h = 2arcsin /py; — 2arcsin y/pp
Conventional thresholds: |h| > 0.2 (small), |h| > 0.5 (medium), |h| > 0.8 (large).

Paired Cohen’s d, (Continuous Outcomes, Preregistered for BX-504D). For contin-
uous metrics (time, cost) in paired designs, we compute the standardized mean difference using
the standard deviation of the paired differences:

n n
> (zBi— M), sp= ¢ i1
=1

where D; = xp; —x), is the paired difference for the i-th task. This paired d, (rather than the
independent-groups pooled-SD formula) is the appropriate effect size for within-subject designs
[25]. Conventional thresholds: |d,| > 0.2 (small), |d;| > 0.5 (medium), |d.| > 0.8 (large).

D
d,=—, D=
SD

(D; — D)2
n—1

S

Odds Ratio (Supplementary). When cells contain zeros, we apply the Haldane-Anscombe
correction (adding 0.5 to each cell) to obtain finite estimates:

(a+0.5)(d+0.5)
(b+0.5)(c+ 0.5)

where a, b, ¢, d are the 2 x 2 table cell counts. We emphasize that OR is supplementary to risk
difference when zero cells are present, as CIs become extremely wide.

ORpa =

4.7.4 Confidence Intervals

All 95% confidence intervals are two-sided unless otherwise noted. We employ methodology
appropriate to each quantity type.

Risk Difference CIs (Paired Binary Outcomes). For paired binary outcomes (e.g., PFT,
success rates), the paired risk difference is RD = (b — ¢)/n where b and ¢ are the discordant
counts from the 2 x 2 paired table (see Section 4.7.2). We employ Tango’s score-based
confidence interval for paired proportion differences [26], which provides excellent coverage
properties for paired designs even with boundary values. The interval is derived from:

b—c — Wb+c—(b—c)?/n

RD = , SE(RD) =
n n

with score-based adjustment for small samples. This paired-appropriate method (rather than
the independent-proportions Newcombe interval) correctly accounts for within-pair correlation.

10

Effect Size Cls for Cohen’s h. For the arcsine-transformed effect size h = 2 arcsin /p1 —
2arcsin /p2, we derive Cls via the arcsine transformation standard error [8]:

yielding Clgs = h £+ 1.96 - SE(h).

Effect Size CIs for Paired d, and Hedges’ g. For continuous outcomes (e.g., completion
time, token cost) in paired designs, we report both paired d, and the bias-corrected Hedges’ g.
The CI for d, is computed via bootstrap percentile intervals with B = 10,000 resamples
(seed = 20260107), which is robust to non-normality in the difference distribution. The Hedges’
g correction factor is:

_ I'(m/2) o1 _3
vm/2T((m —1)/2) 4m —1

Note: For paired designs, the degrees of freedom for J(-) is n—1 (not nj+ng—2 as in independent
designs) [25].

g:dZ-J(TL—l), J(m)

Ratio CIs (Speedup, Cost Ratio). For ratio metrics (e.g., time speedup, geometric mean
cost ratio GG), we employ bootstrap percentile intervals with B = 10,000 resamples (seed =
20260107 for reproducibility). The bootstrap distribution is constructed by resampling paired
observations with replacement, computing the ratio for each resample, and extracting the 2.5th
and 97.5th percentiles.

Variance Ratio CIs. For variance ratios (comparing dispersion between conditions), we use
the F-distribution approximation:

si/s3 si/sh

M
Fry1n2-1,0975 Frni—1,n,-1,0.025

Clgs =

A5 (Vargha-Delaney) ClIs. For the stochastic superiority measure Ajs, we employ boot-
strap percentile intervals with 10,000 resamples, as this nonparametric effect size lacks a closed-
form sampling distribution.

4.7.5 Bayesian Analysis

For binary outcomes, we computed Beta-binomial posteriors to estimate P(mys > mp | data)—
the probability that MOUSE’s true success rate exceeds Baseline’s, given the observed data.

Model Specification.
o Likelihood: kj; ~ Binomial(nys, mar) and kg ~ Binomial(npg, 7p), independently.
o Prior: my, 75 ~ Beta(1, 1) (uniform), representing no prior preference.

o Posterior: By conjugacy, mas | kar ~ Beta(kas + 1,nar — kas + 1) and similarly for 7p.

11

Probability of Superiority. The quantity of interest is:

1 pryp
P(7rM>7rB|data):/0 ; fM(ﬂ'M)'fB(TFB)dTFBdﬂM

where fys and fp are the respective Beta posterior densities. We evaluate this integral via
Monte Carlo simulation: draw S = 100,000 samples (W](\Z),ﬂg)) from the joint posterior, then

compute

~

L () o (s
P(my > mg) = 5 > 1{7T](w) > W%)}
s=1

Interpretation. Unlike frequentist p-values (which quantify evidence against a null), the
Bayesian posterior probability directly answers: “Given our data and prior beliefs, how confident
should we be that MOUSE is genuinely better?” Values exceeding 0.95 indicate strong evidence
of superiority; values exceeding 0.99 indicate very strong evidence. This Bayesian supplement
provides a probability-of-superiority interpretation alongside the frequentist p-values.

Limitation: Independence Assumption. This Beta-Binomial model treats marginal suc-
cess rates as independent and does not explicitly model within-pair correlation. The paired
structure of our design (which induces positive correlation between conditions on the same
task) is instead captured by the frequentist McNemar and permutation tests. The Bayesian
posterior should be interpreted as a descriptive supplement for probability-of-superiority, not
as a replacement for the paired-design inference.

4.8 Methods Rationale

Agent runs exhibit substantial between-instance variance due to stochastic sampling and API-
level non-determinism. Pairing—running both conditions on identical benchmark instances—
controls this variance and isolates the tool-architecture effect. Randomization-based infer-
ence (permutation tests, exact binomial) avoids fragile distributional assumptions that may
not hold for small-to-moderate paired samples. This design follows recent recommendations for
more rigorous LLM evaluation methodology [22].

We present standard effect summaries (risk differences, ratios, 95% ClIs) as the primary
inferential language, with exact enumeration and distribution-free bounds as robustness checks.
Cross-check statistics (sign tests, Wilcoxon) confirm that conclusions are not sensitive to ana-
lytical choices.

4.9 Validity Checks

A /A Validation A Baseline-vs-Baseline study (N = 5 pairs) confirmed no systematic arm
bias in the telemetry harness (identical success rates, Fisher p = 1.0).

Order Effects Linear regression on cost ratio vs execution order found |5]| < 0.03, |r| < 0.03
(BX-504D), confirming no learning or fatigue confounds.

Session Effects No time-of-day or session-number confounds detected (|r| < 0.2 for all).

Randomization Mulberry32 PRNG with preregistered seeds determined within-pair order
and session assignment.

12

5 Results

We organize results into two parts to distinguish claims with different epistemic status.

Part A: Confirmatory Findings. Findings corresponding to preregistered primary and
secondary hypotheses with ae = 0.05 error-rate control. Per our protocols, secondary hypotheses
were tested only if the primary hypothesis was significant (hierarchical gatekeeping). We report
all preregistered results—including null findings—to ensure complete transparency.

Part B: Robustness Analyses and Effect Characterization. Effect size characteri-
zations, cross-check statistics, robustness bounds, and mechanism explorations. These supple-
ment the confirmatory findings and demonstrate that conclusions are not sensitive to analytical
choices. No additional familywise error claims are made. Detailed exploratory analyses (PCA,
K-S tests, shift functions) appear in Appendix B.

5.1 Part A: Confirmatory Findings

The following findings correspond to preregistered hypotheses tested at a = 0.05.

5.1.1 Study BX-504B: Primary Hypothesis (H1)

Study BX-504B evaluated precision editing performance using Claude Haiku 4.5 with a 180-
second timeout and two-sided hypothesis tests.

Finding A-1: Mouse Achieves 56% First-Try Correctness; Baseline Achieves
0%

Table 3: Perfect First Try (PFT) results from Study BX-504B (N = 25 pairs).

Metric Mouse Baseline Statistical Test

PFT Rate 14/25 (56.0%) 0/25 (0.0%) McNemar exact (two-sided)
95% CI (Wilson) [37.1%,73.3%] [0.0%,13.3%] p=1.22x 10~*

The McNemar 2 x 2 discordance table:

Table 4: McNemar discordance table for PFT (Study BX-504B).

Baseline PFT=1 Baseline PFT=0

Mouse PFT=1 0 14
Mouse PFT=0 0 11

Discordant pairs: b+ ¢ = 14+ 0 = 14. The two-sided exact McNemar p-value is 2 x 0.5 =
1.22 x 1074

Cross-check (sign test): In 14 of 14 discordant pairs, MOUSE achieved PFT while Baseline
did not. Under the null hypothesis of equal probability, this is equivalent to observing 14 heads
in 14 fair coin flips (sign test p = 6.1 x 10~° one-sided, 1.22 x 10~* two-sided), confirming the
McNemar result.

Interpretation: On a precision code-editing task, MOUSE achieved first-try correctness
in 56% of attempts. Baseline achieved 0% across 25 independent attempts under identical
conditions.

13

5.1.2 Study BX-504B: Secondary Hypotheses (H2, H3)

Finding A-2: BX-504B H2 (Success Rate) Did Not Reach Statistical Signifi-
cance

Per our preregistered protocol, we tested H2 (Success Rate) only because H1 was significant.

Table 5: Success rate results from Study BX-504B (N = 25 pairs). Not statistically signifi-
cant.

Metric Mouse Baseline Statistical Test
Success Rate 19/25 (76.0%) 13/25 (52.0%) McNemar exact (two-sided)
Discordant pairs b=9,c=3 p = 0.146

Result: The two-sided McNemar p-value of 0.146 did not reach statistical significance at
a = 0.05. While the point estimate favors MOUSE (76% vs 52%), we cannot reject the null
hypothesis that the success rates are equal.

Interpretation: The PFT advantage (Finding A-1) does not translate to a statistically
significant success rate advantage in this sample. The 10 concordant successes reduced effective
sample size for the McNemar test to 12 discordant pairs.

Finding A-3: BX-504B H3 (Cost Per Success) Was Gated and Not Tested

Per our preregistered hierarchical gatekeeping procedure, H3 was not tested because H2 did not
reach significance. This maintains family-wise error control but precludes formal cost-efficiency
claims from Study BX-504B.

5.1.3 Study BX-504B: Per-Protocol Sensitivity Analysis

Our preregistered protocol specified a per-protocol (PP) sensitivity analysis excluding runs with
documented rate-throttling indicators. Four pairs exhibited rate-throttling telemetry (“rate
limit exceeded” errors in API logs), leaving N=21 pairs for PP analysis.

Finding A-4: PP Analysis Shows Significant H2 and H3 Results

Table 6: Per-Protocol sensitivity analysis results (N=21 pairs). Significant but exploratory.

Hypothesis Metric Result McNemar p
H2 Success Rate 17/21 (81.0%) vs 10/21 (47.6%) 0.021
H3 Cost Per Success MOUSE lower in 10/10 discordant 0.021

Interpretation: When rate-throttling noise is removed, both H2 and H3 reach significance at
a = 0.05. However, because the I'TT analysis governs our confirmatory claims, these PP results
are properly classified as preregistered sensitivity analyses—they inform interpretation but do
not override the null ITT finding for H2.

Epistemic status: The PP analysis was preregistered and follows the gatekeeping hier-
archy (H2 PP significant = test H3 PP). We report it for completeness and to illustrate that
measurement noise (rate-throttling) likely attenuated the ITT effect. Readers should weight
the ITT result (Finding A-2) as primary.

14

5.1.4 Study BX-701R: Primary and Secondary Hypotheses

Study BX-701R evaluated capability boundaries using Claude Sonnet 4.5 with a 240-second
timeout on a 126-row column-relocation task designed to stress context and output limits. All
tests were preregistered as one-sided based on strong directional calibration evidence.

Finding A-5: BX-701R H1 (7;) and H2 (Success) Both Significant

Table 7: Confirmatory results from Study BX-701R (N = 19 pairs).

Hyp. Metric Result p-value

H1 T, (cont.) RMTS = 169.2s (MOUSE 70.8s vs ~ 7.63 x 107°
Baseline 240.0s)

H2 Success (binary) 89.5% vs 0% (17/19 vs 0/19) 7.63 x 1076

T, calculation: The truncated time-to-success T, assigns each run its completion time if
successful, or the timeout 7 = 240s if not. For MOUSE: mean T, = 70.8s (17 successes with
times ranging from 14.7s to 177.1s, plus 2 timeouts at 240s). For Baseline: mean T = 240.0s
(all 19 runs timed out). The Restricted Mean Time Saved (RMTS) is the mean of paired

differences:
n

RMTS = %Z(TT,BJ — T pi) = 240.0 — 70.8 = 169.2s
i=1
A 95% bootstrap CI for RMTS (10,000 resamples, BCa method) yields [128.3, 194.1]s, confirming
substantial time savings even accounting for sampling variability.

H1 p-value derivation (permutation test): For continuous T, we use an exact paired
permutation test. Under Hy, the sign of each paired difference D; = T g ; — T pr; is exchange-
able. With n = 19 pairs, there are 2'? = 524,288 possible sign permutations. Of these, only 4
yield a mean difference > observed (169.2s)—corresponding to the 22 = 4 equivalent sign pat-
terns from the 2 tie pairs where both conditions timed out. Thus p = 4/524,288 = 7.63 x 1075.

H2 p-value derivation (McNemar): For binary success, we use the exact McNemar
test. With 17 discordant pairs all favoring MOUSE (b = 17, ¢ = 0), the one-sided p-value is
P(X > 17| X ~ Binomial(17,0.5)) = 0.5'7 = 7.63 x 1076,

Note on p-value coincidence: The identical p-values for H1 and H2 are a mathematical
coincidence arising from the data structure: (1) the permutation test’s 4 extreme permutations
come from 22 (two tie pairs), yielding 4/2'%; (2) McNemar’s 0.5'7 happens to equal this same
value. Both tests are correctly specified for their respective outcome types (continuous vs
binary).

Interpretation: For this column-relocation task under the tested tool interface and 240s
timeout, Baseline achieved 0/19 completions while MOUSE achieved 17/19. Both preregistered
hypotheses are confirmed. This represents a capability boundary observed under these specific
conditions; alternative baseline implementations or longer timeouts might yield different results.

5.1.5 Study BX-504D: Primary and Secondary Hypotheses

Study BX-504D evaluated economic efficiency using Claude Haiku 4.5 with a 120-second timeout
on a file deprecation task. All tests were preregistered as one-sided.

15

Finding A-6: BX-504D H1 (Cost Ratio) Significant

Table 8: Cost efficiency confirmatory results from Study BX-504D (N = 23 pairs).

Metric Value
Geometric Mean Cost Ratio G 1.5830

95% CI (bootstrap, 10,000 samples) [1.3453,1.9118]
95% CI (permutation-inversion) [1.3106,1.9129]
Permutation test (one-sided) p=715x10"7
Total permutations tested 223 = 8,388, 608

Interpretation: Baseline costs 58% more per task than Mousg. The 95% CI lower bound
(1.31x) provides a distribution-free floor under the randomization design: at least a 31% cost
premium for Baseline.

Cross-check (Wilcoxon): Wilcoxon signed-rank test [29] on log-transformed cost ratios
confirms the permutation result (W = 276, p < 0.001), demonstrating that the conclusion is
robust to statistical method choice.

Finding A-7: BX-504D H2 (Time) Significant

Table 9: Time efficiency confirmatory results from Study BX-504D (NN = 23 pairs).

Metric Mouse Baseline
Geometric Mean Time 12.48s 44.69s

Speedup Ratio 3.58x, 95% CI [2.77,4.06]
Permutation test (one-sided) p=119x 1077

Geometric mean calculation: The geometric mean time for each condition is computed as:

B 1 n n 1/n
Tgeom = €xp (n Zlog Tz) = (H Tz)
i=1 =1

For MOUSE (n = 23): Tgeomm = exp(mean(log7hs;)) = 12.48s. For Baseline (n = 23):
TgeomB = exp(mean(logTg;)) = 44.69s. The speedup ratio is 44.69/12.48 = 3.58x.

Interpretation: MOUSE completes tasks 3.58 x faster than Baseline. The permutation test
confirms this is not due to chance (p = 1.19 x 1077).

16

5.1.6 Summary: Confirmatory Results (H1 Confirmed in All Studies)

Table 10: Summary of confirmatory hypothesis tests across all three studies.

Study Hypothesis Endpoint Result p-value
BX-504B H1 PFT Rate Confirmed 1.22 x 1074
BX-504B H2 Success Rate Not significant 0.146
BX-504B H3 Cost Per Success Gated —
BX-701R H1 T, Completion Confirmed 7.63 x 1076
BX-701R H2 Success Rate Confirmed 7.63 x 1076
BX-504D H1 Cost Ratio Confirmed 7.15 x 1077
BX-504D H2 Time Ratio Confirmed 1.19 x 1077

Six of seven preregistered hypotheses were confirmed at o = 0.05. The one null result (BX-504B
H2) is transparently reported, with its downstream hypothesis (H3) appropriately gated per the
preregistered hierarchical procedure.

5.2 Part B: Robustness Analyses and Effect Characterization

The following findings provide robustness analyses, effect characterization, and cross-check
statistics that supplement the confirmatory results above. They demonstrate that conclusions
are robust to analytical choices and are not artifacts of specific statistical methods.

5.2.1 Effect Size Dashboard

Table 11 provides a consolidated view of effect sizes across all three studies. Effect sizes marked
with t were preregistered; others are post-hoc characterizations.

Table 11: Effect size dashboard: Primary endpoints across studies.

Study Endpoint Effect Size Value Interpretation
Binary outcomes
BX-504B PFT Rate Risk Diff. +56 pp [+33,+73] 56% absolute improvement
Cohen’s h 1.69 [1.14,2.25] >2x “large”
BX-701R Success Risk Diff. +89.5 pp [+63,+97] 89.5% absolute improvement
Cohen’s h 2.48 [1.84,3.12] >3x “large”
Continuous outcomes
BX-504D Time dt 1.23 [1.09, 2.66] >1.5x “large”
Al, 1.00 [1.00, 1.00] Complete dominance
Cost G' (ratio) 1.58x [1.35,1.91] Baseline 1.58x MOUSE
BX-701R T, Al, 0.95 Near-complete dominance
Correlation (post-hoc)
BX-701R Success o (=r) 0.90 [0.81,0.95] 81% outcome variance

Key finding: Across all three studies, effect sizes range from “large” to “very large” by con-
ventional criteria. The consistency across multiple orthogonal measures—risk difference, stan-
dardized mean difference, probability of superiority, and correlation—provides strong evidence
that the observed MOUSE advantages are not artifacts of any particular effect size measure.

17

5.2.2 Effect Size Characterization (BX-504B)

Finding B-1 (BX-504B): Risk Difference of +56 Percentage Points; OR = 64X
(Supplementary)

Table 12: Effect sizes for precision (Finding B-1). Risk difference is primary; OR is supplemen-
tary.

Metric Value Note

Risk Difference +56.0 pp, 95% CI [+33,473] pp Primary effect size

NNT 1.8 Tasks to switch for one additional PFT
Conditional Win Rate 14/14 = 100% [76.8%, 100%] Clopper-Pearson
Cohen’s h 1.69 [1.14,2.25] >2x “large” (0.8); post-hoc

Odds Ratio (Haldane) 64.3x Suppl.; 0-cell corrected

OR 95% CI [3.5,1173] Wide due to 0-cell correction

Note on OR: When Baseline has 0 successes, the odds ratio is technically infinite. The
Haldane-Anscombe correction (adding 0.5 to each cell) yields a finite estimate but with a wide
CI. We emphasize risk difference (+56 pp) and NNT (1.8) as more interpretable primary effect
sizes.

Finding B-2 (BX-504B): Perfect Conditional Win Rate on Precision (14-0
Sweep)

In all 14 discordant pairs (where methods disagreed on PFT), MOUSE won. Conditional win
rate = 100% [76.8%, 100%)].

Interpretation: Whenever one tool achieved first-try success and the other didn’t, MOUSE
was always the winner.

Finding B-3 (BX-504B): >99.99% Bayesian Posterior Probability of Mouse
Superiority

Using uniform Beta(1,1) priors:

MOUSE posterior: Beta(15,12) = E[mas] = 0.556
Baseline posterior: Beta(1,26) = E[rp] = 0.037
P(my > 7 | data) > 0.9999

5.2.3 Descriptive Findings: Study BX-701R

The following findings from Study BX-701R provide additional context beyond the confirmatory
results reported in Section 5.1.4.

Finding B-4 (BX-701R): Conditional Win Rate of 100% (17-0 Sweep)

Table 13: McNemar discordance table for Success (Study BX-701R).

Baseline Success=0 Baseline Success=1

Mouse Success=1 17 0
Mouse Success=0 2 0

18

Conditional Win Rate: 17/17 = 100% [80.5%, 100%)] (Clopper-Pearson exact).

Finding B-5 (BX-701R): 169 Seconds Saved Per Task on Average (RMTS)

Table 14: Time efficiency results from Study BX-701R.

Metric Mouse Baseline

Mean T, 70.8s 240.0s (all timeouts)
Median T’ 52.5s 240.0s

RMTS 169.2s per task, 95% CI [136.2,197.8]s
Permutation test (one-sided) p=7.63x10"6

Finding B-6 (BX-701R): Fastest Completion in 14.7 Seconds

The fastest MOUSE completion (Pair 10) finished in 14.7 seconds with 6 tool calls and $0.13
imputed cost. All 19 Baseline runs timed out at 240s.

Finding B-7 (BX-701R): 94.7% Probability of Superiority on Time

Table 15: Time superiority analysis (BX-701R).

Metric Value

Win/Loss/Tie 17/0/2
P(MousEk faster) 94.7%, 95% CI [75.4%, 99.1%)

Sensitivity analysis: Wilcoxon signed-rank test on 17 non-zero differences yields W+ =
153, W~ = 0. The exact one-sided p-value (enumerating all 2!7 sign permutations) equals
the McNemar p-value: 7.63 x 107%. The normal approximation (z = 3.62, p =~ 0.00015) is
conservative due to ties at the boundary.

Finding B-8 (BX-701R): Baseline Failures Predominantly Due to Length-
Limit (89.5%)

Table 16: Failure mode breakdown (Study BX-701R).

Failure Mode Mouse Baseline
Success 17/19 0/19
Length-Limit (context/output exhaustion) 0/19 (0%) 17/19 (89.5%)
Timeout-Discover 2/19 (10.5%) 2/19 (10.5%)

Interpretation: Baseline failures were predominantly classified as Length-Limit based on error
signatures, suggesting output/context constraints rather than timeout as the binding constraint.
MousE had 0/19 Length-Limit failures, consistent with its compact notation mitigating context
pressure.

Classification methodology: Failure mode was assigned based on the Copilot chat re-
sponse. Length-Limit failures were identified by the presence of the specific message: “Sorry,
the response hit the length limit. Please rephrase your prompt.” Timeout-Discover failures
were classified when the timer expired without this message appearing. This classification is

19

unambiguous as the length-limit message is clearly distinguishable from generic server errors or
other failure modes.

5.2.4 Descriptive Findings: Study BX-504D

The following findings from Study BX-504D provide additional context beyond the confirmatory
results reported in Section 5.1.5.

Finding B-9 (BX-504D): 95.7% Win Rate on Cost (22/23 Pairs)

Baseline was more expensive in 22/23 pairs; MOUSE was more expensive in 1/23 pairs; 0 ties.

Finding B-10 (BX-504D): 100% Win Rate on Time (23/23 Pairs)

MOUSE was faster in all 23 pairs. Zero overlap: the slowest MOUSE run (20.6s) was faster than
the fastest successful Baseline run (30.7s).

Finding B-11 (BX-504D): Complete Distribution Separation (K-S D = 1.00)

Table 17: Kolmogorov-Smirnov distributional comparison.

Metric K-S D p-value Interpretation

Time 1.00 < 0.001 Complete separation
Cost 0.83 < 0.001 83% non-overlapping

K-S D =1.00 (maximum possible) confirms the time distributions have zero overlap.

Finding B-12 (BX-504D): Mouse Shows 99x Lower Variance

Table 18: Variance comparison (Levene’s test).

Metric Baseline SD Mouse SD Variance Ratio Levene p
Time 26.32s 2.64s 99.2x, 95% CI [42,234] < 0.001
Cost $0.047 $0.007 41.1x, 95% CI [17,97] < 0.001

Interpretation: Baseline shows 99X higher time variance. MOUSE delivers predictable execu-
tion (SD = 2.6s) vs Baseline’s high variability (SD = 26s).

Finding B-13 (BX-504D): 74% of Cost Savings From Output Token Reduction

Table 19: Token economics analysis.

Metric Mouse Baseline
Output tokens per call 172 708
Input tokens per call 23,077 24,332
API calls per task 9.3 11.8

Cost savings attribution: 74% from output token reduction (4.1x fewer per call), 20% from
fewer API calls, 6% from input efficiency.

20

Sensitivity to pricing assumptions. Because cost advantage derives primarily from
output token reduction, it is robust to price ratio changes. Under alternative output/input
ratios: at 2x (cheap output), G = 1.42; at 5x (current Anthropic), G = 1.58; at 10x (premium
output), G = 1.71. The advantage increases as output tokens become more expensive. For
pricing-agnostic comparison: output tokens per task were 1,600 (MOUSE) vs 8,350 (Baseline),
a 5.2x reduction that holds regardless of dollar assumptions.

Finding B-14 (BX-504D): Uniform ~3x Advantage Plus Tail Compression

Table 20: Shift function: quantile treatment effects.

Percentile Mouse Baseline Ratio (95% CI)

10th 104s 32.1s 3.1x [2.87,3.38]
50th 1225 36.9s 3.0x [2.52,3.33]
90th 15.7s 79.4s 5.1x [2.10,8.52]

MOUSE shows ~3x uniform advantage across the distribution plus additional tail compression
at the 90th percentile (5.1x).

Finding B-15 (BX-504D): Single “Efficiency” Dimension Captures 81% of
Metric Variance (PCA)

Table 21: Principal component analysis.

Component Variance Explained Top Loadings

PC1 81.3% Time (—0.49), Cost (—0.50), Tools (—0.50)

Condition separation on PC1: Cohen’s d = 0.91, 95% CI [0.30,1.52] (“large”; preregistered
exploratory analysis per BX-504D Protocol §5.7.1). The MOUSE advantage is a single dominant
efficiency factor.

5.3 Part B.3: Cross-Study Synthesis
Finding B-16 (Cross-Study): Pooled Cost Ratio G = 1.37x [1.20, 1.55]

Random-effects meta-analysis on log(cost ratio) across BX-504D and BX-504B (excluding BX-
701R due to 0% Baseline success). The pooled estimate uses inverse-variance weighting on
log-transformed ratios:

& (> w; log GZ-> 1
=exp| " w; =
pooled P > w; " Var(log Gy) + 72

where 72 is the DerSimonian-Laird estimate of between-study variance [27].

o Pooled G = 1.37x, 95% CI [1.20, 1.55]

o Lower bound ensures at least 20% Baseline cost premium

21

Finding B-17 (Cross-Study): Mouse Advantage Pattern Varies With Task
Difficulty

Table 22: Observed advantage pattern by task difficulty.

Difficulty Study Baseline Success (95% CI) Mouse Advantage

Easy BX-504D 91% [73%, 98%) Cost /speed
Medium BX-504B 52% [34%, 70%) Reliability (PFT)
Hard BX-701R 0% [0%, 17%)] Capability boundary

Finding B-18 (Cross-Study): Substantial Heterogeneity (I* = 77.9%)

The I? statistic quantifies the proportion of total variability attributable to true between-study
heterogeneity (rather than sampling error). It is computed as:

Q—(k—1)
0)xlOO%

where k is the number of studies and @) is Cochran’s heterogeneity statistic [28]:

I’ = maX(O,

k ~ 2
Q = Z Wy (91 - 9pooled>
=1

Here 0; is the effect estimate from study i, épooled is the fixed-effect pooled estimate, and w; =
1/Var(6;) are inverse-variance weights. Under the null hypothesis of homogeneity, Q ~ x7_;.

Result: I? = 77.9% indicates substantial heterogeneity, which is expected given the different
task difficulties and outcome types across studies. Caveat: With only two studies contributing
to the pooled cost ratio (BX-701R excluded due to zero Baseline successes), heterogeneity
metrics should be interpreted cautiously; I? estimates are unstable at small k.

5.4 Part B.4: Distribution-Free Lower Bounds

Finding B-19 (BX-504D): At Least 50% of Tasks Cost >25% More Under
Baseline

Table 23: Magnitude guarantee bounds (one-sided Clopper-Pearson 95% lower bounds).

Threshold Observed 95% Lower Bound

> 1.25x 16/23 (69.6%) 50.4%
> 1.50% 8/23 (34.8%) 18.6%
> 2.00x 4/23 (17.4%) 6.2%

These are distribution-free lower bounds based on binomial confidence intervals, requiring only
the randomization/pairing design assumption.

Finding B-20 (BX-504D): At Least 19% of Tasks Cost >50% More Under
Baseline

From Finding B-19: 8/23 pairs exceeded 1.5x; 95% lower bound = 18.6%.

22

Finding B-21 (BX-504D): Median Cost Ratio CI Excludes 1.0

Distribution-free 95% CI for median cost ratio: [Ry, Ri7)] = [1.2346,1.7164]. The entire
interval exceeds 1.0.

Derivation: For n paired ratios Ry,..., R,, the distribution-free CI for the population
median uses order statistics R) and R(,4i_g), where k is the smallest integer satisfying
P(Binomial(n,0.5) < k) < a/2. For n = 23 and a = 0.05, we have k = 7, yielding the inter-
val [R(7), R(17)]. This method requires only the assumption that observations are exchangeable
under the null; it makes no distributional assumptions about the ratio magnitudes.

Interpretation: Because the CI excludes 1.0 entirely, we can conclude with 95% confidence
that at least half of all task pairs favor MOUSE on cost—i.e., the median pair shows a genuine
cost advantage, not merely the mean.

5.4.1 Statistical Robustness

Finding A-8: Six of Seven Preregistered Hypotheses Confirmed

See Section 5.1.6 for the complete summary table of confirmatory results. The key findings are:
o All primary hypotheses (H1) across all three studies reached significance at « = 0.05
o BX-504B H2 (Success Rate) did not reach significance (p = 0.146) under ITT analysis
o BX-504B H3 was gated per the preregistered hierarchical procedure

e Secondary hypotheses in BX-701R and BX-504D were confirmed after their respective H1
gates passed

Note on effect strength: All confirmed hypotheses were found to be strongly significant,
ranging from (two-sided) ~3.8¢0 (BX-504B H1) to ~5.1c (BX-504D H2).

Finding A-9: No Order or Session Confounds Detected

Table 24: Order effects regression analysis (BX-504D).

Predictor B 95% CI |r] Status
MouseFirst (order) —0.02 [—0.28,+0.24] 0.03 Pass
Session —0.04 [-0.16,+0.08] 0.15 Pass

All correlations |r| < 0.2, confirming randomization worked as intended.

6 Discussion

6.1 Tool Architecture as a Performance Lever

Our results demonstrate that tool architecture is a critical lever for AI agent perfor-
mance. The same underlying model achieved dramatically different outcomes depending on
available tools. Current competitive dynamics in Al coding assistants focus on model capability;
our evidence suggests tool design may be equally important.

23

6.2 The Verbosity Tax

The “oldString/newString” paradigm imposes a verbosity tax: agents pay in tokens, time, and
reliability for echoing content that already exists. MOUSE’s declarative approach eliminates this
tax. The 456 percentage point improvement in first-try correctness suggests verbosity actively
undermines reliability.

6.3 Capability Boundaries vs. Absolute Limits

Study BX-701R revealed a capability boundary: the 126-row column-relocation task was com-
pleted by 0% of Baseline runs vs 89.5% of MOUSE runs. We emphasize this is a boundary
under the tested interface and timeout—mnot a claim about absolute model limits. Alternative
baseline implementations (e.g., different diff formats, chunked approaches) or longer timeouts
might yield different results.

6.4 The Consistency Advantage

Beyond raw speed, MOUSE’s 99x lower variance has operational implications. Predictable
execution enables better resource planning and reduces timeout padding requirements.

Hypothesized mechanism. We attribute the variance reduction to two architectural
properties absent from baseline tools: (1) atomic batch operations, which execute multiple edits
as a single all-or-nothing transaction, eliminating partial-failure states; and (2) staged preview,
which allows agents to inspect edits before committing them to disk and roll back if the preview
reveals errors. Together, these capabilities let agents “fail fast” on malformed edits rather than
silently corrupting files and requiring expensive recovery loops. We note these are feature-level
descriptions; implementation details are proprietary.

6.5 Threats to Validity
6.5.1 Internal Validity

« Randomization: Mulberry32 PRNG with preregistered seeds controlled order effects;
regression analysis confirmed no confounds.

e Docker isolation: Fresh containers per run prevented state leakage.

o A/A validation: Baseline-vs-Baseline runs confirmed harness neutrality.

6.5.2 External Validity

« Benchmark specificity: Our three custom tasks isolate file-editing tool architecture
as an independent variable—a controlled design choice. This specificity enables clean
causal inference but does not substitute for broader ecological validation. We propose
cross-benchmark validation protocols in Section 6.7.

o Single baseline: We compared against VS Code’s replace_string_in_file. Other
baseline implementations (e.g., diff-based tools, alternative find-replace APIs) might per-
form differently. Plausible alternatives outside this study’s scope include: (1) unified-diff
application via patch(1), (2) chunked multi-replace strategies that break large edits into
smaller operations, and (3) syntax-directed editors that leverage AST-level transforma-
tions. Future work (Section 6.7) outlines our pre-committed evaluation plan for two of
these alternatives.

e Model specificity: Results obtained with Claude models via GitHub Copilot. General-
ization to Gemini, Amazon Nova, or open-source models requires further study. (Not all

24

LLM clients/tooling stacks support MCP-style tool use; generalization to other assistants
requires direct testing.)

Copilot version drift: GitHub Copilot’s underlying model may change over time; these
results reflect December 2025 behavior.

6.5.3 Construct Validity

6.6

6.7

Cost measurement: Imputed costs based on public rate cards, not actual Copilot billing.
Token counts are accurate; pricing is illustrative.

Limitations

. Task selection: Benchmark tasks were designed to stress specific capabilities; ecological

validity requires field studies.

Sample size: While statistically powered for large effects, larger samples would narrow
confidence intervals.

Proprietary implementation: MOUSE details are not disclosed; independent replica-
tion requires access to the toolkit.

Future Work

Baseline diversity: Three dimensions require expansion:

1. MCP client diversity: Comparison across MCP clients (e.g., Amazon Q Developer vs
GitHub Copilot) to test whether MOUSE’s advantages generalize beyond the GitHub
Copilot agent loop.

2. AI coding assistant diversity: Testing with terminal-based IDE agents (e.g., Claude
Code) and alternative VS Code extensions to assess interaction-mode effects.

3. Editing paradigm diversity: Comparison against diff-based tools, patch application,
and other file-editing paradigms beyond the “oldString/newString” baseline studied
here.

Model generalization: Testing with Gemini, Amazon Nova, and open-source models.
(Client /tooling diversity remains a key validation priority.)

Mechanism analysis: Ablation studies to identify which tool features (e.g., staging,
batch operations, declarative syntax) drive observed advantages.

Benchmark positioning: Our review of SWE-bench and CanltEdit suggests these
benchmarks primarily test coding acumen and problem-solving strategy rather than sur-
gical file-editing capability. We speculate that staging and preview features may benefit
agents on such tasks, but null results would not undermine our findings—those bench-
marks test different constructs. We propose developing file-editing-specific benchmark
extensions that isolate the editing mechanism as an independent variable.

Pre-committed baseline replication plan. To address the single-baseline limitation, we
commit to evaluating two alternative baselines: (1) unified-diff application, where agents output
standard diff -u patches applied via patch(1); (2) chunked multi-replace, where agents issue
multiple smaller find-replace operations rather than single large edits. Success criterion: if
either alternative baseline achieves > 80% of MOUSE’s success rate on BX-504B, we will report
it as a viable alternative and narrow claims accordingly.

25

7 Artifacts and Reproducibility

7.1 Materials Available Upon Request

Subject to IP review, we can provide:
e Benchmark task files and answer keys
o Harness scripts (timer tools, telemetry capture)
e Anonymized run logs with token counts and outcomes
e Randomization seeds and session schedules
» Baseline tool API specification (for replication with alternative tools)

o Analysis scripts (ES6/Node.js, no external dependencies)

7.2 Reproducibility Checklist

Artifact Identifier / Format

Benchmark files (BX-504B) SHA-256: a7c3... (445-line source)
Answer key (BX-504B) SHA-256: b9d1... (158-line target)
Preregistration Internal commit 2024-12-* (OSF pending)
Randomization seeds Mulberry32: OxDEAD. .. per study

Run log schema JSONL: {runld, tokens, time, outcome}
Analysis entrypoint node analyze-study.js -study=BX-504B

7.3 What Cannot Be Shared

MOUSE implementation details and source code are proprietary.

8 Conclusion

We presented MOUSE, a precision file-editing toolkit for Al coding agents, and demonstrated
its advantages through three preregistered confirmatory studies totaling 67 paired comparisons.

8.1 Summary of Findings

Table 25: Summary of the MOUSE value proposition.

Dimension Primary Effect Size p-value

Precision +56 pp risk difference 1.22 x 107* (two-sided)
Capability +89.5 pp risk difference 7.63 x 1079 (one-sided)
Speed 3.6x faster 1.19 x 1077 (one-sided)
Cost G = 1.58x 7.15 x 1077 (one-sided)
Consistency (exploratory) 99x lower variance < 0.001 (Levene)

8.2 Implications

These results suggest the Al coding tool community should consider tool architecture as a first-
class optimization target alongside model capability. The tools we give Al agents may matter
as much as the agents themselves.

26

References

1]
2]
3]
[4]

[16]

GitHub. GitHub Copilot: Your AI pair programmer. Technical report, GitHub, 2021.
Cursor. Cursor: The Al-first code editor. https://cursor.com, 2023.
Anthropic. Claude: A next-generation Al assistant. Technical report, Anthropic, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. SWE-bench: Can language models resolve real-world GitHub issues?
In International Conference on Learning Representations, 2024. https://arxiv.org/abs/
2310.06770

Anthropic. Model Context Protocol. https://modelcontextprotocol.io, 2024.

Tim Teitelbaum and Thomas Reps. The Cornell program synthesizer: A syntax-directed
programming environment. Communications of the ACM, 24(9):563-573, 1981.

Quinn McNemar. Note on the sampling error of the difference between correlated propor-
tions or percentages. Psychometrika, 12(2):153—-157, 1947.

Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum
Associates, 2nd edition, 1988.

J.B.S. Haldane. The estimation and significance of the logarithm of a ratio of frequencies.
Annals of Human Genetics, 20(4):309-311, 1956.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, et al. Toolformer: Language models can
teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

Yujia Qin, Shihao Liang, Yining Ye, et al. ToolLLM: Facilitating large language models to
master 16000+ real-world APIs. arXiv preprint arXiv:2307.16789, 2023.

Paul Gauthier. Aider: Al pair programming in your terminal. https://aider.chat, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, et al. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.0337/4, 2021.

Jacob Austin, Augustus Odena, Maxwell Nye, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan
Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, Jacob Steinhardt. Measur-
ing Coding Challenge Competence with APPS. Proceedings of the 35th Conference on
Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2021.
Available: https://arxiv.org/abs/2105.09938. [Accessed: 2026-01-05]

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Anton Lozhkov,
Carolyn Jane Anderson, Arjun Guha. Can It Edit? FEvaluating the Ability of Large
Language Models to Follow Code Editing Instructions. Proceedings of the 2024 Joint
International Conference on Computational Linguistics (LREC-COLING), 2024. Available:
https://arxiv.org/abs/2312.12450. [Accessed: 2026-01-05]

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma, Tianyu Zheng, Shuyue Guo, Guangtao
Zeng, Jing Su, Xinrun Du, Chenghua Lin, Minghui Xu, Yuxiang Zhang, Wenhao Huang,
Ge Zhang, Jiaheng Liu. CodeEditorBench: Evaluating Code Editing Capability of Large
Language Models. arXiv preprint arXiv:2404.03543, 2024. Available: https://arxiv.
org/abs/2404.03543. [Accessed: 2026-01-05]

27

https://cursor.com
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://modelcontextprotocol.io
https://aider.chat
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2312.12450
https://arxiv.org/abs/2404.03543
https://arxiv.org/abs/2404.03543

[18] EditBench Authors. EditBench: Realistic Instructed Code Editing Tasks. arXiv preprint,
2025. (Preprint anticipated 2025.)

[19] Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li,
Fei Huang, Yongbin Li. API-Bank: A Comprehensive Benchmark for Tool-Augmented
LLMs. Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2023. Available: https://arxiv.org/abs/2304.08244. [Accessed:
2026-01-05]

[20] Shishir G. Patil, Tianjun Zhang, Xin Wang, Joseph E. Gonzalez. Gorilla: Large Language
Model Connected with Massive APIs. arXiv preprint arXiv:2305.15334, 2023. Available:
https://arxiv.org/abs/2305.15334. [Accessed: 2026-01-05]

[21] Berkeley Function Calling Leaderboard. Gorilla LLM. Available: https://gorilla.cs.
berkeley.edu/leaderboard.html. [Accessed: 2026-01-05]

[22] Evan Hubinger, Samuel R. Bowman, Felipe Polo, Mourad Heddaya, David Sontag, and
Leshem Choshen. Adding Error Bars to Evals: A Statistical Approach to Language Model
Evaluations. arXiv preprint arXiv:2411.00640, 2024. Available: https://arxiv.org/abs/
2411.00640. [Accessed: 2026-01-05]

[23] Robert G. Newcombe. Interval estimation for the difference between independent propor-
tions: Comparison of eleven methods. Statistics in Medicine, 17(8):873-890, 1998.

[24] Larry V. Hedges. Distribution theory for Glass’s estimator of effect size and related esti-
mators. Journal of Educational Statistics, 6(2):107-128, 1981.

[25] Daniél Lakens. Calculating and reporting effect sizes to facilitate cumulative science: A
practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4:863, 2013.

[26] Toshiro Tango. Equivalence test and confidence interval for the difference in proportions
for the paired-sample design. Statistics in Medicine, 17(8):891-908, 1998.

[27] Rebecca DerSimonian and Nan Laird. Meta-analysis in clinical trials. Controlled Clinical
Trials, 7(3):177-188, 1986.

[28] William G. Cochran. The combination of estimates from different experiments. Biometrics,
10(1):101-129, 1954.

[29] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80—
83, 1945.

A Statistical Notes

A.1 Test Directionality Summary

Table 26: Preregistered test directionality by study.

Study Binary Tests Continuous Tests Rationale

BX-504B Two-sided One-sided (H3) Conservative for novel comparison
BX-701R One-sided One-sided Strong directional calibration
BX-504D — One-sided Directional hypotheses

28

https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2305.15334
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html
https://arxiv.org/abs/2411.00640
https://arxiv.org/abs/2411.00640

A.2 Sigma Conversion

For two-sided tests, 0 = ®~!(1 — p/2). For one-sided tests reported here, we first double the p-
value to obtain a two-sided equivalent before conversion, ensuring conservative and comparable
o values across studies.

A.3 Glossary

PFT Perfect First Try—task completed correctly on first attempt
Success Task completed with 100% accuracy within timeout

T Truncated time-to-success—completion time or timeout

RMTS Restricted Mean Time Saved—mean paired difference

G Geometric Mean Paired Cost Ratio: exp(mean(log(R;)))

NNT Number Needed to Treat—tasks to switch for one additional success

Risk Difference Difference in success proportions (primary effect size for binary outcomes)

B Exploratory Analyses

The following analyses are descriptive/exploratory and do not carry confirmatory error-rate
claims.
B.1 Principal Component Analysis (BX-504D)

PCA on standardized [Time, Cost, ToolCalls] revealed a single dominant “efficiency” dimen-
sion (PC1) capturing 81.3% of metric variance. Loadings: Time (—0.49), Cost (—0.50), Tools
(—0.50). Condition separation on PC1: Cohen’s d = 0.91 (“large”). This suggests the MOUSE
advantage is not multi-dimensional but reflects a unified efficiency factor.

B.2 Kolmogorov-Smirnov Tests (BX-504D)

K-S tests assessed distributional separation:
e Time: D = 1.00 (maximum possible), p < 0.001—complete separation

e Cost: D =0.83, p < 0.001—83% non-overlapping

B.3 Shift Function Analysis (BX-504D)

Quantile treatment effects showed uniform ~3x advantage across the distribution plus addi-
tional tail compression at the 90th percentile (5.1x), suggesting MOUSE benefits both typical
and worst-case executions.

C Study-Level Summary Statistics

Tables 27-29 provide descriptive statistics for each of the three confirmatory studies, computed
directly from the trial-level data files. These tables enable independent verification of the effect
sizes and statistical claims reported in the main text.

Data sources:

e BX-504B: cfm-bx-504b/SUMMARY_OF _BX-504B_CONFIRMATORY_STUDY_DATA.csv

29

e BX-701R: cfm-bx-701r/SUMMARY_OF_CFM-BX-701R_DATA.csv
e BX-504D: cfm-bx-504d/SUMMARY_OF RESULTS.csv

Notation: Values shown as mean + SD where applicable. Time and cost ranges are [min,
max]. “PFT” = Perfect First Try. “pp” = percentage points. Speedup and cost ratios express
Baseline relative to MOUSE (e.g., 3.5x = Baseline takes 3.5x as long).

C.1 Study BX-504B: Precision Editing

Table 27: Descriptive statistics for Study BX-504B: Precision Editing (N = 25 pairs, Claude
Sonnet 4.5, 7 = 180s, v0.9.5).

Metric Mouse Baseline Difference
Success Rate 19/25 (76.0%) 13/25 (52.0%) +24.0 pp
PFT Rate 14/25 (56.0%) 0/25 (0.0%) +56.0 pp

Mean Time (s) 118.7 £ 47.1 146.5 + 41.4 1.23x faster
Median Time (s) 121.5s 173.4s —
Time Range (s) [47.2, 180.0] [62.9, 180.0] —
Time SD (s) 47.13 41.39 —
Time Variance (s?) 2221.0 1712.8 0.8x
Mean Cost $0.2763 + $0.1030 $0.2685 + $0.0750 0.97x
Median Cost $0.2564 $0.2703 —
Cost SD $0.1030 $0.0750 —
Cost Variance 106.14 x 10~ 56.31 x 10~ 0.5x
Mean Tokens 1723K 1387K —
Mean Tool Calls 36.6 37.5 —

C.2 Study BX-701R: Capability Boundary

Table 28: Descriptive statistics for Study BX-701R: Capability Boundary (N = 19 pairs, Claude
Sonnet 4.5, 7 = 240s, v0.9.7).

Metric Mouse Baseline Difference
Success Rate 17/19 (89.5%) 0/19 (0.0%) +89.5 pp
PFT Rate 17/19 (89.5%) 0/19 (0.0%) +89.5 pp

Mean Time (s) 70.8 £ 714 240.0 £ 0.0 3.39x faster
Median Time (s) 52.5s 240.0s —
Time Range (s) [14.7, 240.0] [240.0, 240.0] —
Time SD (s) 71.43 0.00 —
Time Variance (s?) 5102.4 0.0 0.0x
Mean Cost $0.2711 + $0.1929 $0.1584 + $0.1656 0.58x
Median Cost $0.2200 $0.1100 —
Cost SD $0.1929 $0.1656 —
Cost Variance 372.10 x 1074 274.14 x 1074 0.7x
Mean Tokens 412K 170K —
Mean Tool Calls 14.4 10.3 —

30

C.3 Study BX-504D: Economic Efficiency

Table 29: Descriptive statistics for Study BX-504D: Economic Efficiency (N = 23 pairs, Claude
Haiku 4.5, 7 = 120s, v0.9.7).

Metric Mouse Baseline Difference
Success Rate 23/23 (100.0%) 21/23 (91.3%) +8.7 pp
PFT Rate 23/23 (100.0%) 17/23 (73.9%) +26.1 pp
Mean Time (s) 12.8 + 2.6 45.8 £ 26.3 3.58x faster
Median Time (s) 12.2s 36.9s —

Time Range (s) 9.5, 20.6] [30.7, 120.0] —

Time SD (s) 2.64 26.32 —

Time Variance (s?) 7.0 692.9 99.2x
Mean Cost $0.0508 &+ $0.0073 $0.0873 £ $0.0467 1.72x
Median Cost $0.0511 $0.0670 —

Cost SD $0.0073 $0.0467 —

Cost Variance 0.53 x 1074 21.79 x 1074 41.1x
Mean Tokens 216K 291K —

Mean Tool Calls 9.3 11.8 —

D Post-Hoc Effect Size Characterization

Disclosure: The following effect size calculations were performed post-hoc to characterize
effect magnitude for readers familiar with these conventions. They were not specified in the
preregistered analysis plans and do not carry confirmatory error-rate claims.

D.1 Hedges’ g (Sensitivity Analysis)

Hedges’ g provides a small-sample bias-corrected version of Cohen’s d. We report these as
sensitivity analyses for the preregistered Cohen’s d values.

Population and design: All d/g values computed on ITT population using paired (within-
subject) designs. Timeout-truncated values used for Time/Cost metrics.

Table 30: Hedges’ g effect sizes by study (paired d. and bias-corrected g). All values exceed
“large” threshold (0.8).

Study Metric Paired d, Hedges’ g

BX-504D Time (paired) 1.23, 95% CI [1.09,2.66] 1.18, 95% CI [1.05,2.57]
BX-504D Cost (paired) 0.76, 95% CI [0.62,1.13] 0.74, 95% CI [0.60, 1.09]
BX-701R T, (paired) 2.37, 95% CI [1.49,7.18] 2.27, 95% CI [1.43,6.88]

Interpretation: Small-sample correction reduces effect estimates by 4-5%, but all remain
“very large” (>1.0).

D.2 Pearson’s r and r? (Variance Explained)

Pearson’s correlation provides an alternative effect size representation showing proportion of
variance explained by condition. Because condition is binary, these are point-biserial (continuous

31

outcomes) or phi (binary outcomes) correlations; r

2

is interpreted in a linear-probability sense

and is reported descriptively, not as a preregistered inferential endpoint.

Table 31: Pearson’s r and variance explained (r2?) by study.

Study

r? (Variance Explained)

BX-701R
BX-701R
BX-504D
BX-504D
BX-504B

Metric r (95% CI)

Success Rate 0.90 [0.81,0.95]
T, 0.82 [0.69, 0.90]
Time 0.79 [0.64,0.89]
Cost 0.68 [0.46,0.82]
PFT Rate 0.66 [0.45, 0.80]

81%
67%
62%
46%
44%

Interpretation: For BX-701R success rate, condition assignment explains 81% of outcome
variance (¢? = 0.81, where ¢ is the phi coefficient for binary variables)—an extraordinarily large
effect indicating near-complete separation. Note: This is distinct from the PCA finding (B-15)
where PC1 captures 81% of metric variance.

D.3 Cohen’s h for Proportions

Cohen’s h is computed as h = 2(arcsin \/p1 — arcsin /p2).

Table 32: Cohen’s h for binary outcomes by study.

Study

Metric

Cohen’s h

Interpretation

BX-701R
BX-504B
BX-504B

Success Rate

PFT Rate

Success Rate

2.48,95% CI [1.84,3.12] >3x “large” (0.8)

1.69, 95% CI [1.14,2.25] >2x “large” (0.8)

0.50, 95% CI [—0.06,1.06] “Medium” (0.5)

D.4 Vargha-Delaney A;, (Probability of Superiority)

Ajs represents the probability that a randomly selected MOUSE trial outperforms a randomly
selected Baseline trial.

Table 33: Vargha-Delaney Ajo by study. Values of 1.0 indicate complete dominance.

Study Metric Aio Note

BX-504D Time 1.00, 95% CI [1.00,1.00] Complete separation
BX-504D Cost 0.96, 95% CI [0.90,1.00] Near-complete dominance
BX-701R Time 0.95, 95% CI [0.87,0.99] Near-complete dominance
BX-504B PFT Rate 0.78, 95% CI [0.62,0.88] Large effect

Note: Ajo for BX-504D and BX-701R was preregistered as “Probability of Superiority”
in Protocol §5.3.5 and §6.2 respectively. The values reported here confirm those preregistered

analyses.

D.5 Cohen’s U; (Non-Overlap)

Us indicates the proportion of the Baseline distribution below the MOUSE mean—a measure of
distributional separation.

32

Table 34: Cohen’s Uz by study and metric.

Study Metric Us

BX-504D Time 100%
BX-504D Cost 96.5%
BX-701R Success 100%
BX-504B PFT 100%

Interpretation: Uz = 100% indicates no overlap—all MOUSE values exceed all Baseline
values.

D.6 Number Needed to Treat (Binary Outcomes Only)

NNT is properly defined for binary outcomes as 1/RD (risk difference). We report NNT only
for binary endpoints.

Table 35: Number Needed to Treat for binary outcomes.

Study Metric NNT

BX-701R Success Rate 1.1
BX-504B PFT Rate 1.8

Interpretation: NNT of 1.1-1.8 means switching 1-2 tasks from Baseline to MOUSE yields
one additional success.

D.7 Summary: Effect Size Magnitude

Across all three studies and all metrics, effect sizes range from “large” to “very large” by
conventional criteria:

o Cohen’s d/Hedges’ g: 1.76-3.84 (all >2x “large”)
o Cohen’s h: 0.50-2.48 (medium to very large)
o Pearson’s r: 0.66-0.90 (all “large” by Cohen’s benchmarks)

o Ajy: 0.78-1.00 (large to complete dominance)

These post-hoc effect size characterizations are consistent with the confirmatory findings
reported in Part A and the robustness analyses in Part B.

33

	Introduction
	The File-Editing Bottleneck
	The Cost of Verbosity
	Research Questions
	Contributions

	Background and Related Work
	AI Coding Assistants
	Tool Use in Large Language Models
	Programming by Edit and Patch-Based Approaches
	Evaluation Benchmarks
	Agent-Level Benchmarks
	Tool-Use and Function-Calling Benchmarks
	Edit Generation Quality Benchmarks
	The AI Agent File-Editing Tool Gap

	The File-Editing Problem

	The Mouse Approach
	High-Level Architecture
	Key Capabilities
	Comparison to Baseline

	Methods
	Study Design
	Experimental Environment
	Cost Measurement
	Instruction Neutrality
	The Three Studies
	Study BX-504B: Precision Editing
	Study BX-701R: Capability Boundary
	Study BX-504D: Economic Efficiency

	Metrics
	Statistical Methods
	Test Directionality
	Primary Tests
	Effect Sizes
	Confidence Intervals
	Bayesian Analysis

	Methods Rationale
	Validity Checks

	Results
	Part A: Confirmatory Findings
	Study BX-504B: Primary Hypothesis (H1)
	Study BX-504B: Secondary Hypotheses (H2, H3)
	Study BX-504B: Per-Protocol Sensitivity Analysis
	Study BX-701R: Primary and Secondary Hypotheses
	Study BX-504D: Primary and Secondary Hypotheses
	Summary: Confirmatory Results (H1 Confirmed in All Studies)

	Part B: Robustness Analyses and Effect Characterization
	Effect Size Dashboard
	Effect Size Characterization (BX-504B)
	Descriptive Findings: Study BX-701R
	Descriptive Findings: Study BX-504D

	Part B.3: Cross-Study Synthesis
	Part B.4: Distribution-Free Lower Bounds
	Statistical Robustness

	Discussion
	Tool Architecture as a Performance Lever
	The Verbosity Tax
	Capability Boundaries vs. Absolute Limits
	The Consistency Advantage
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Limitations
	Future Work

	Artifacts and Reproducibility
	Materials Available Upon Request
	Reproducibility Checklist
	What Cannot Be Shared

	Conclusion
	Summary of Findings
	Implications

	Statistical Notes
	Test Directionality Summary
	Sigma Conversion
	Glossary

	Exploratory Analyses
	Principal Component Analysis (BX-504D)
	Kolmogorov-Smirnov Tests (BX-504D)
	Shift Function Analysis (BX-504D)

	Study-Level Summary Statistics
	Study BX-504B: Precision Editing
	Study BX-701R: Capability Boundary
	Study BX-504D: Economic Efficiency

	Post-Hoc Effect Size Characterization
	Hedges' g (Sensitivity Analysis)
	Pearson's r and r-squared (Variance Explained)
	Cohen's h for Proportions
	Vargha-Delaney A12 (Probability of Superiority)
	Cohen's U3 (Non-Overlap)
	Number Needed to Treat (Binary Outcomes Only)
	Summary: Effect Size Magnitude

